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Necessary conditions of normal pointsystems for Hermite–Fejér interpolation of
arbitrary (even) order are given. In particular, one of the main results in this paper
is: If a pointsystem consists of the zeros of orthogonal polynomials with respect to a
weight w on [−1, 1] and is always normal for Hermite–Fejér interpolation of
arbitrary (even) order, then w(x) ’ (1−x2)−1/2. © 2001 Academic Press

1. INTRODUCTION AND MAIN RESULTS

Let m, n ¥N and

X: 1=x0n \ x1n > x2n > · · · > xnn \ xn+1, n=−1. (1.1)

In what follows we shall often omit the superfluous notations. The symbols
c, c1, ... will stand for positive constants, being independent of variables
and indices, unless otherwise indicated; their value may be different at
different occurrences, even in subsequent formulas. N2 stands for the set
of even integers of N. Let w be a weight on [−1, 1] and Pn(x)=
Pn(w, x)=cn(w) xn+·· · (cn(w) > 0) the nth orthonormal polynomial with
respect to w on [−1, 1] (P0=1). ln(x)=ln(w, x)=[;n−1

k=0 Pk(w, x)2]−1 is
the Christoffel function. |I| means the Lebesgue measure of the set I.
|| · || denotes the uniform norm on [−1, 1]. Denote by PN the set of poly-
nomials of degree at most N and by Ajk=Ajknm(X) the fundamental
polynomials for Hermite interpolation, i.e., Ajk ¥ Pmn−1 satisfy

A (p)
jk (xq)=djpdkq, p, j=0, 1, ..., m−1, q, k=1, 2, ..., n. (1.2)



The Hermite–Fejér interpolation for f ¥ C[−1, 1] is given by

Hnm(f, x)=C
n

k=1
f(xk) A0k(x).

To give an explicit formula for Ajk set

ak(x)=
wn(x)

w −n(xk)(x−xk)
,

wn(x)=(x−x1)(x−x2) · · · (x−xn),

bik=
1
i!
[ak(x)−m] (i)

x=xk ,

i=0, 1, ..., m−1, k=1, 2, ..., n, (1.3)

Bjk= C
m−j−1

i=0
bik(x−xk) i,

j=0, 1, ..., m−1, k=1, 2, ..., n. (1.4)

Then we have [7]

Ajk(x)=
1
j!
(x−xk) j Bjk(x) ak(x)m,

j=0, 1, ..., m−1, k=1, 2, ..., n.

We also introduce the notations

Wn(x)=2nwn(x), dn(x)=
(1−x2)1/2

n
,

Dn(x)=dn(x)+
1
n2 , v(x)=(1−x2)−1/2.

A pointsystem X is said to be normal for Hermite–Fejér interpolation
Hnm(X), m ¥N2, if

A0knm(x) \ 0, x ¥ [−1, 1], x ¥ [−1, 1], k=1, 2, ..., n, n=1, 2, ...,
(1.5)

This paper will give necessary conditions for a pointsystem to be normal
for Hnm(X) for every m ¥N2. The first main result is
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Theorem 1.1. If a pointsystem X satisfies

max
1 [ k [ n

||A0knm(x)|| [ cm, -m ¥N2, (1.6)

with

lim sup
mQ.

(cm)1/m <+., (1.7)

then

(a) we have

||(x−xk) ak(x)|| [ cDn(xk), k=1, 2, ..., n; (1.8)

(b) we have

||(x−xk) ak(x)|| ’ Dn(xk), k=1, 2, ..., n; (1.9)

(c) we have

sup
n
||Wn || < +. (1.10)

and

|W −n(xk)| ’ Dn(xk)−1, k=1, 2, ..., n; (1.11)

(d) the relation (1.10) is true and

max
xk+1 [ x [ xk

|Wn(x)| \ c, k=1, 2, ..., n−1; (1.12)

(e) the relation (1.10) is true and the inequality

lim sup
kQ.

|Wnk (x)| \ c, a.e. x ¥ [−1, 1], (1.13)

holds for every subsequence Ng={nk}
.

k=1.

The second main result is

Theorem 1.2. Let w be a weight on [−1, 1] and X the zeros of the
orthonormal polynomial Pn(w, x). If (1.6) and (1.7) are true then

(A) we have

||(x−xk) ak(x)|| [ cdn(xk), k=1, 2, ..., n; (1.14)
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(B) we have

||(x−xk) ak(x)|| ’ dn(xk), k=1, 2, ..., n; (1.15)

(C) we have

sup
n
||Pn(w)|| < +. (1.16)

and

|P −n(w, xk)| ’ dn(xk)
−1, k=1, 2, ..., n; (1.17)

(D) the relation (1.16) is true and

max
xk+1 [ x [ xk

|Pn(w, x)| \ c, k=0, 1, ..., n; (1.18)

(E) the relation (1.16) is true and the inequality

lim sup
kQ.

|Pnk (w, x)| \ c, a.e. x ¥ [−1, 1], (1.19)

holds, for every subsequence Ng;

(F) we have

w ’ v, a.e.; (1.20)

(G) we have

ln(w, x) ’
1
n
, x ¥ [−1, 1].

The last main result is

Theorem 1.3. If a pointsystem X is normal for Hnm(X) for every m ¥N2

then Statements (a)–(e) hold and the relation

lim
nQ.

||Hnm(X, f)−f||=0, - ¥ C[−1, 1] (1.21)

holds for every m ¥N2. Furthermore, if X consists of the zeros of the ortho-
normal polynomial Pn(w, x) and is normal, then Statements (A)–(G) hold.
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2. AUXILIARY LEMMAS

First we state some known results needed below.

Lemma A [8, Lemma 3; 7, Theorem 2.1]. If m−j is odd and j < i < m
then

|Ajk(x)| \
i!
j!
d j− i

k |Aik(x)|, x ¥ [−1, 1], k=1, 2, ..., n, (2.1)

where dk=max{|xk−xk−1 |, |xk−xk+1 |}.

Lemma B [7, Lemma 5.1]. Let xkn=cos hkn. If

hk+1, n−hkn \
c1
n
, k=1, 2, ..., n−1, (2.2)

and

hk+1, n−hkn [
c2
n
, k=0, 1, ..., n, (2.3)

then

|xj−xk | ’
| j−k| min{j+k, 2n+2−j−k}

n2 ,

j ] k, 1 [ j, k [ n, (2.4)

and

dk ’ Dn(xk) ’
min{k, n+1−k}

n2 , k=1, 2, ..., n. (2.5)

Lemma C [7, Lemma 5.2]. If (2.2) and (2.3) are true and

|a −k(xk)| [ cDn(xk)−1, k=1, 2, ..., n, (2.6)

then

|bik | [ cDn(xk)−i, k=1, 2, ..., n, i=0, 1, ... . (2.7)

Next, we give some auxiliary lemmas, which are of independent interest.
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Lemma 2.1. If (1.8) is true, we have (2.2), (2.3),

||ak || [ c, k=1, 2, ..., n, (2.8)

and

> C
n

k=1
|ak |p> [ ˛

c ln n, p=1,

c, p > 1.
(2.9)

Proof. We denote by c0 the constant c in (1.8) and may assume c0 \ 1.
Let k, 1 [ k [ n, be fixed and let |ak(t)|=||ak ||, t ¥ [−1, 1]. If |xk−t|
\ c0Dn(xk) then by (1.8) ||ak ||=|ak(t)| [ 1. Let us consider the case
when |xk−t| < c0Dn(xk). By Bernstein Inequality |a −k(t)| [ cDn(t)−1 |ak(t)|,
whence according to (1.8) we have

|ak(t)+(t−xk) a
−

k(t)| [ c3Dn(t)−1 c0Dn(xk)=
c0c3Dn(xk)
Dn(t)

. (2.10)

We claim that

d :=
Dn(xk)
Dn(t)

[ c4=5c0. (2.11)

In fact, if |t| [ |xk | then Dn(xk) [ Dn(t) and hence d [ 1. Now let us prove
(2.11) for |t| > |xk |. By the mean value theorem for the derivative

: Dn(xk)−Dn(t)
Dn(t)
:= 1
nDn(t)

|(1−x2
k)

1/2−(1−t2)1/2|

=
|g| |xk−t|

n(1−g2)1/2 Dn(t)
[

c0
n(1−g2)1/2

·
Dn(xk)
Dn(t)

,

where |t| > |g| > |xk |. Using the symbol d in (2.11) the above inequality
becomes

d−1 [
c0

n(1−g2)1/2
d. (2.12)

We separate two cases.

Case 1. c0/n(1−g2)1/2 [ 1/2. In this case by (2.12) we have d−1
[ d/2 and hence d [ 2.
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Case 2. c0/n(1−g2)1/2 > 1/2. In this case

(1−t2)1/2 < (1−g2)1/2 <
2c0
n

and hence

1−x2
k=1−t2+t2−x2

k [ 1−t
2+2 |t−xk |

[
4c20
n2 +2c0Dn(xk) [

2c0(1−x
2
k)

1/2

n
+
6c20
n2 .

We rewrite the above inequality as

[(1−x2
k)

1/2]2−
2c0
n
[(1−x2

k)
1/2]−

6c20
n2 [ 0

and solve it to get (1−x2
k)

1/2 [ 4c0/n. Thus

Dn(xk) [
4c0
n2+

1
n2 [

5c0
n2 .

Since Dn(t) \ 1/n2, by (2.11) we conclude d [ 5c0. This proves (2.11) and
hence (2.10) becomes

|ak(t)+(t−xk) a
−

k(t)| [ c5=5c20c3. (2.13)

If |t| < 1 then a −k(t)=0 and (2.13) yields ||ak ||=|ak(t)| [ c5. If |t|=1
then, noticing that ak has only real zeros which are all in [−1, 1],
ak(t)[(t−xk) a

−

k(t)] \ 0. The above inequality together with (2.13) also
gives ||ak ||=|ak(t)| [ c5. This, proves (2.8).

Inequality (2.2) and (2.3) directly follow from (2.8) by [1, Theorem 1].
To prove (2.9) let x ¥ [−1, 1] be fixed and |x−xj |=min1 [ k [ n |x−xk |.

Suppose without loss of generality that j [ n/2. Then

min{k+j, 2n+2−k−j} \ (k+j)/3. (2.14)

Clearly ||aj || [ c by (2.8). For k ] j by (1.8), (2.4), (2.5), and (2.14)

|ak(x)| [
c0Dn(xk)
|x−xk |

[
cDn(xk)
|xj−xk |

[
c min{k, n+1−k}

|k2−j2|
.

Then

C
k ] j

|ak(x)|p [ cp C
k ] j

5min{k, n+1−k}
|k2−j2|

6p :=cp[S1+S2+S3+S4],
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where

Si= C
k ¥Ki

5min{k, n+1−k}
|k2−j2|

6p, i=1, 2, 3, 4,

and

K1 :={k : k [ 1
2 j}, K2 :={k : 12 j < k [

3
2 j, k ] j},

K3 :={k : 32 j < k [
3
4 n}, K4 :={k : 34 n < k [ n}.

It is easy to see that

S1 [ c C
k ¥K1

5 j
j2
6p=c C

k ¥K1

j−p [ cj1−p [ c;

S2 [ c C
k ¥K2

5 j
j |k−j|
6p=c C

k ¥K2

|k−j|−p [ ˛
c ln j, p=1,

c, p > 1.

For k ¥K3 we have k−j > k/3 and min{k, n+1−k} [ k. Hence

S3 [ c C
k ¥K3

|k+j|−p [ ˛
c ln n, p=1,

c, p > 1.

Finally

S4 [ c C
k ¥K4

5n+1−k
n2
6p [ cn1−p [ c.

Thus (2.9) follows. L

Lemma 2.2. Let (2.2) and (2.3) prevail. If

|W −n(xk)| \ c6Dn(xk)−1, k=1, 2, ..., n, (2.15)

then the inequality (1.13) with c=c(c1, c2, c6) holds for every subsequenceNg.

Proof. Let x=cos h, I=[0, p],

tkn=I 5 [hkn−c1/(4n), hkn+c1/(4n)], k=1, 2, ..., n;

In=0
n

k=1
tkn;

hkn=[hkn, hk+1, n]0In, k=0, 1, ..., n.
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Claim 1. We have

|x−xin | \ c7Dn(xkn), i=k, k+1, h ¥ hkn, k=1, 2, ..., n−1,

|x−x1n | \ c7Dn(x1n), h ¥ h0n, |x−xnn | \ c7Dn(xnn), h ¥ hnn.

In fact, for h ¥ hkn, 1 [ k [ n, by (2.5) |x−xk | \ |cos(hk+c1/(4n))−
cos hk | \ c7Dn(xk). Similarly, for h ¥ hkn, 0 [ k [ n−1, we get |x−xk+1 | \
c7Dn(xk).

Claim 2. We have

|Wn(cos h)| \ c8, h ¥ I0In. (2.16)

We need a result given by Erdős and Turán [2, Lemma IV]

ak(x)+ak+1(x) \ 1, x ¥ [xk+1, xk], 0 [ k [ n, a0=an+1=0. (2.17)

Thus

Wn(x)
W −n(xk)(x−xk)

+
Wn(x)

W −n(xk+1)(x−xk+1)
\ 1,

x ¥ [xk+1, xk], 1 [ k [ n−1. (2.18)

Then for h ¥ hkn, 1 [ k [ n−1, by Claim 1 and (2.15)

1 [
c9

c6Dn(xk)−1 c7Dn(xk)
|Wn(x)|=

c9
c6c7

|Wn(x)|

and hence |Wn(x)| \ c8=c6c7/c9. Similarly, for h ¥ h1n or h ¥ hnn, it is
enough to use (2.17) with k=0 or k=n, respectively. This proves (2.16).

Claim 3. Let I −n=1n
k=1 t

−

kn, where each set t −kn is an interval and
t −kn 5 t −jn=”, k ] j, k, j=1, 2, ..., n. Then

|I −n 5 IN | [ 7
8 |I

−

n |, (2.19)

if N is large enough.
In fact, if |I −n |=0 then (2.19) is trivial. Now assume that |I −n | > 0 and

choose N> 16c1n/|I
−

n |. We distinguish two cases.

Case 1. |t −kn | < 2c1/N. In this case we use an obvious estimation
|t −kn 5 IN | [ |t −kn |.
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Case 2. |t −kn | \ 2c1/N. In this case by (2.2) the interval t −kn contains at
most

5|t −kn | 1
c1
N
2−16+1=5N |t

−

kn |
c1
6+1

points hiN’s. Since |t −in | \ 2c1/N, we have

|t −kn 5 IN | [ 35
N |t −kn |
c1
6+14 c1

2N
[ 3N |t

−

kn |
c1

+14 c1
2N

[
|t −kn |
2
+
c1
2N

[
3
4
|t −kn |.

Thus, recalling N> 16c1n/|I
−

n |,

|I −n 5 IN |=: 0
n

k=1
(t −kn 5 IN) :=C

n

k=1
|t −kn 5 IN |

[ C
|t −kn| < 2c1/N

|t −kn |+
3
4

C
|t −kn| \ 2c1/N

|t −kn |

[
2c1n
N
+
3
4
|I −n | [

1
8
|I −n |+

3
4
|I −n |=

7
8
|I −n |.

This proves Claim 3.

Claim 4. For every fixed integer i the set Igi=4.

k=i Ink satisfies

|Igi |=0. (2.20)

In fact, choosing I −n=IN0
with N0 :=ni and applying Claim 3 we

conclude that there is a number N=N1 ¥Ng, N1 >N0, so that |IN0
5 IN1

|
[ 7

8 |IN0
|. If |4 j

k=0 INk
| [ (78)

j |IN0
| is true for some j \ 1 then applying

Claim 3 to the set 4 j
k=0 INk

we can choose a number N=Nj+1 ¥Ng,
Nj+1 >Nj, so large that

: 3
j+1

k=0
INk
: [ 7

8
: 3

j

k=0
INk
: [ (78) j+1 |IN0

|.

By induction there is a sequence of integers ni=N0 <N1 <N2 < · · · , N1,
N2, ... ¥Ng, such that

: 3
j

k=0
INk
: [ (78) j |IN0

|
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holds for every j. Thus

|Igi |=: 3
.

k=i
Ink : [ : 3

.

k=0
INk
: [ lim

jQ.

: 3
j

k=0
INk
: [ lim

jQ.
(78)

j |IN0
|=0.

This proves Claim 4.
For the proof of (1.13) we consider the set

Ig={h ¥ [0, p] : lim sup
kQ.

|Wnk (cos h)| < c8}, (2.21)

where c8 is defined in (2.16). Clearly, it suffices to show

|Ig|=0. (2.22)

Claim 5. We have

Ig … 0
i ¥N

g
Igi . (2.23)

In fact, h ¥ Ig means lim supkQ. |Wnk (cos h)| < c8, which implies that there
is an integer i=i(h) ¥Ng such that |Wnk (cos h)| < c8 holds for every k \ i.
By (2.16), h ¥ Ink holds for every k \ i. That is, h ¥ Igi . This proves (2.23).

Now (2.22) follows directly from (2.20) and (2.23). L

Lemma 2.3. We have

(a)Z (b)Z (c)Z (d)S (e).

Proof. As we know,

||Wn || \ ||2Tn || \ 2, (2.24)

where Tn stands for the nth Chebyshev polynomial of the first kind, and by
[2, Lemma I]

C
n

k=1

1
|W −n(xk)|

\
1
4
. (2.25)

(a)S (b). By Bernstein Inequality |W −n(xk)| [ cDn(xk)−1 ||Wn ||, or
equivalently,

||(x−xk) ak(x)||=
||Wn ||

|W −n(xk)|
\ c−1Dn(xk).
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(b)S (c). By Statement (b),

||Wn || C
n

k=1

1
|W −n(xk)|

=> C
n

k=1

: Wn(x)
W −n(xk)
:>=> C

n

k=1
|(x−xk) ak(x)|>

[ c C
n

k=1
Dn(xk) [ c, (2.26)

which coupled with (2.25) yields (1.10). By (1.9), (1.10), and (2.24) the
relation (1.11) follows.

(c)S (d). Inserting t=(xk+xk+1)/2 into (2.18), we obtain

|Wn(t)|
1
2 (xk−xk+1)

5 1
|W −n(xk)|

+
1

|W −n(xk+1)|
6 \ 1

and hence by (1.11) and (2.5)

max
x ¥ [xk+1, xk]

|Wn(x)| \ |Wn(t)| \
1
2 (xk−xk+1) · cDn(xk)−1 \ c.

(d)S (a). By the same argument as that of Lemma 2 in [3].
(a)S (e). Apply Lemmas 2.1 and 2.2 and use Implication (a)S (c).

L

Lemma 2.4. If (1.14) is true, we have (2.8), (2.9),

dn(xk) ’ Dn(xk), k=1, 2, ..., n, (2.27)

and

hk+1, n−hkn ’
1
n
, k=0, 1, ..., n. (2.28)

Proof. Clearly

dn(xk) [ Dn(xk), k=1, 2, ..., n. (2.29)

Hence (1.14) implies (1.8). Then according to Lemma 2.1 the inequalities
(2.2), (2.3), (2.8), and (2.9) hold. Applying Lemma 2.3 the relation (1.9) is
true. By (1.14) and (1.9)

dn(xk) \ c
||Wn ||

|W −n(xk)|
\ cDn(xk),
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which coupled with (2.29) gives (2.27). To prove (2.28) it is enough
to establish the inequalities h1n−h0n \ c/n and hn+1, n−hnn \ c/n. By
(2.27) with k=1 we have dn(x1) \ cDn(x1) \ c/n2 and hence (1−x2

1)
1/2 \

c/n, which implies h1n − h0n=h1n \ sin h1n \ c/n. Similarly we can prove
hn+1, n−hnn \ c/n. L

Lemma 2.5. Let w be a weight on [−1, 1] and X the zeros of the ortho-
normal polynomial Pn(w, x). If (1.16) is true then

w \ cv, a.e. (2.30)

and

cn(w) ’ 2n. (2.31)

Proof. By (1.16), ln(x)−1=;n−1
k=0 Pk(x)2 [ cn and hence ln(x) \ c/n,

which by [5, Theorem 6.2.33, p. 93] gives (2.30). This shows that w belongs
to the so-called Szegő class, which implies (2.31) (cf. [5, p. 39]). L

Lemma 2.6. Let w be a weight on [−1, 1] and X the zeros of the ortho-
normal polynomial Pn(w, x). Then

(A)Z (B)Z (C)Z (D)S (E)S (F)Z (G).

Proof. (A)S (B) By Lemma 2.4 we have (2.27) and (1.8), which gives
Statement (B) by Implication (a)S (b).

(B)S (C). We need a result given by the author in [6, (14) and
(15)]: for an arbitrary weight w

|Pn(w, x)| [ c C
n

k=1
|(x−xk) ak(x)|, (2.32)

which coupled with (1.15) yields (1.16). Besides the relation (1.17) follows
from (1.15), (1.16), (2.2 4), and (2.31).

(C)S (D). The inequality (1.18) may be deduced from (2.17) by the
same argument as that of Implication (c)S (d).

(D)S (A). Apply Lemma 2 in [3] and use (2.31).
(A)S (E). The inequality (1.19) follows from (1.13) and (2.31).
(E)S (F). By Lemma 2.5 we get (2.30). On the other hand, by [4,

(10.3)]

lim
nQ.

F
1

−1

:[Pn(x)2−2xPn(x) Pn−1(x)+Pn−1(x)2] w(x)−
2
p
(1−x2)1/2 : dx=0.
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According to the result that strong convergence in L1 implies a.e. conver-
gence for a subsequence we get

[Pnk (x)
2−2xPnk (x) Pnk −1(x)+Pnk −1(x)2] w(x)

Q
2
p
(1−x2)1/2, a.e., kQ..

We rewrite the above relation as

{[Pnk −1(x)−xPnk (x)]
2+(1−x2) Pnk (x)

2} w(x)

Q
2
p
(1−x2)1/2, a.e., kQ..

Hence

lim sup
kQ.

(1−x2) Pnk (x)
2 w(x) [

2
p
(1−x2)1/2, a.e.

Using (1.19) we get w [ cv.
(F)S (G). Use ln(v, x) ’ 1/n and an equivalent definition of

ln(w, x):

ln(w, x)= min
Q ¥ Pn−1

F
1

−1

5Q(t)
Q(x)
62w(t) dt

’ min
Q ¥ Pn−1

F
1

−1

5Q(t)
Q(x)
62v(t) dt=ln(v, x) ’

1
n
.

(G)S (F). By [5, Theorem 6.2.33, p. 93] we have

p(1−x2)1/2 w(x) \ lim sup
nQ.

nln(w, x) \ c

and hence we can apply [5, Theorem 6.2.34, p. 93] to get

p(1−x2)1/2 w(x)= lim
nQ.

nln(w, x) ’ 1. L

Lemma 2.7. Let m ¥N2. If (1.8) is true and m−j is odd then

> C
n

k=1
|Ajk(X)|> [

c ln n
n j . (2.33)
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Proof. By Lemma 2.1 we obtain (2.2), (2.3), and (2.8), the last relation
of which gives (2.6). Then we can apply Lemma C to get (2.7). Thus by
(1.8), (2.7), and (2.8)

|Ajk(x)| [ c C
m−j−1

i=0
|bik(x−xk) i+j

ak(x)m|

=c C
m−j−1

i=0
|bik | |(x−xk) ak(x)| i+j |ak(x)|m−i−j

[ c C
m−j−1

i=0
Dn(xk)−i Dn(xk) i+j |ak(x)|m−i−j

[ cDn(xk) j C
m−j−1

i=0
|ak(x)|m−i−j

[ cDn(xk) j |ak(x)|.

Thus according to (2.9)

> C
n

k=1
|Ajk |> [ c> C

n

k=1
Dn(xk) j |ak |> [

c
n j
> C

n

k=1
|ak |> [

c ln n
n j . L

Lemma 2.8. If a pointsystem X satisfies (1.6) and (1.7) then (1.8) holds.

Proof. Using the relation (2.38) of [7]

C
n

k=1
|(x−xk) A1k(x)| [ C

n

k=1
(x−xk)2 A0k(x), x ¥ R,

by (1.6) we obtain

C
n

k=1
|(x−xk) A1k(x)| [ 4 C

n

k=1
|A0k(x)| [ 4ncm.

By means of (2.1) with i=m−1 and j=1 for each k, 1 [ k [ n,

4ncm \ |(x−xk) A1k(x)| \ (x−xk)2 1
x−xk
dk
2m−2

ak(x)m

and hence

|(x−xk) ak(x)| [ (4ncm)1/m d
(m−2)/m
k .

Thus

|(x−xk) ak(x)| [ lim sup
mQ.

[(4ncm)1/m d
(m−2)/m
k ] [ cdk. (2.34)
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On the other hand, (1.6) with m=2 [1, Sect. 4] implies (2.2) and (2.3),
which yields (2.5). Hence (2.34) means (1.8). L

Lemma 2.9. If

> C
n

k=1
|A0knm |> [ cm (2.35)

holds for every m ¥N2 and (1.7) is true then (1.21) holds for every m ¥N2.

Proof. Clearly, (2.35) implies (1.6). Then applying Lemma 2.8 we get
(1.8). According to Lemma 2.7 we have the estimation (2.33), which
coupled with (2.35) by [7, Theorem 4.3] proves our conclusion. L

3. PROOFS OF THEOREMS

3.1. Proof of Theorem 1.1. Apply Lemmas 2.8 and 2.3. L

3.2. Proof of Theorem 1.2. According to Theorem 1.1 the inequalities
(1.8) and (1.13) are true. By means of (2.32) we obtain (1.16) and hence
by Lemma 2.5 get (2.31). Thus (1.19) follows from (1.13) and (2.31).
Therefore Statement (E) is true and by Lemma 2.6 Statement (F) is
valid. Further, in virtue of [5, Lemma 6.3.6, p. 108] (2.28) is true and
hence (2.27) occurs. This shows Statement (A). It remains to apply
Lemma 2.6. L

3.3. Proof of Theorem 1.3. Since ;n
k=1 A0k(x) — 1, the relation (1.5)

implies cm — 1 in (2.35). Then apply Theorems 1.1 and 1.2 and
Lemma 2.9. L

ACKNOWLEDGMENTS

The author thanks the referees for carefully reading of the manuscript and many helpful
comments on improving the original manuscript.

REFERENCES
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